THE POSSIBILITIES OF PV USE IN BELGRADE AND ONE METHOD OF ECO SUPPLY THE REPUBLIC SERBIA WITH ELECTRIC ENERGY

Zoran NIKOLIĆ, Dušan NIKOLIĆ

4th International Conference on Renewable Electrical Power Sources, Belgrade, 17th and 18th October, 2016
Introduction

The European Parliament, 2008. Goals for the year 2020:
20% reduction in greenhouse gas emissions,
20% improvement in energy efficiency and
20% share of renewable energy in the energy sector
Production and consumption of electric energy in our country

Installed power
- Thermo power plant: 4.368MW (59.8%)
- Hydro power plant: 2.936MW (40.2%)
- Total installed power: 7.304 MW

Electric energy production
- Thermo power plant: 25.5 TWh (70.8%)
- Hydro power plant: 10.5 TWh (29.2%)
- Total installed power: 36 TWh

Coal production
37 million tons
Possibility to supply the electro distribution network using photovoltaic cells

Installed power
PV Area
Inclination
Efficiency
5,060 W
36.3 m²
35°
16.2%.
The measurement results of the possibility on the grid connected photovoltaic

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average annual production of electric energy</td>
<td>$E_{av} = \frac{\sum_{m=1}^{12} E_m}{12}$</td>
</tr>
<tr>
<td>Average annual production of electric energy</td>
<td>6,300,68 kWh</td>
</tr>
<tr>
<td>Daily average production of electric energy</td>
<td>17,262 kWh</td>
</tr>
<tr>
<td>Annual insolation</td>
<td>$T_A = \frac{E_{av}}{P_{PV}}$</td>
</tr>
<tr>
<td>Annual insolation</td>
<td>1,245 h</td>
</tr>
<tr>
<td>Average daily insolation</td>
<td>3,41 h</td>
</tr>
<tr>
<td>Average unit production of electric energy</td>
<td>$E_{sp} = \frac{E_{av}}{S}$</td>
</tr>
<tr>
<td>Specific annual electric energy production</td>
<td>173,6 kWh/m²</td>
</tr>
</tbody>
</table>

4th International Conference on Renewable Electrical Power Sources, Belgrade, 17th and 18th October, 2016
Photovoltaic supply of consumers by electric energy in Serbia

For the production of 36 TWh of electric energy must be set around 206,5 km2 of solar panels.

The yield from hydropower is 10,5 TWh of electric energy, so the required yield of 25,5 TWh of electric energy requires about 146,9 km2 of solar panels. This is about 50% of the area of Deliblato desert.
Problems

1. Storage of electrical energy
2. Commissioning
3. Supplement with other renewables (hydro, wind, bio)
4. Ecology
5. Price 0,5 US$/W
6. Efficiency 16 – 80%
THANKS FOR YOUR ATTENTION